
Intersection of HPC and Machine Learning

Kadupitiya Kadupitige, UID: 2000253911, Uname: jasakadu
ENGR-E 687 IND STUDY INTEL SYS: FINAL REPORT

Abstract— Parallel machine learning focused on employing
high performance technologies to enhance the performance
of advanced machine learning algorithms in data mining
frameworks. Scaling up such frameworks has been shown to
enhance the performance in benchmark tasks and to enable dis-
covery of complex high-level features. Conversely auto-tuning of
multicore based cross platforms often utilizes machine learning
models to obtain the best performance as well. Auto tuning
explores the search space defined by code transformations,
compiler flags, architectural features, optimization parameters,
and etc, by engaging state of art machine learning techniques
to speedup the optimization process which could otherwise take
many machine months to explore exhaustively. This research
presents a study focused on intersection of HPC and machine
learning technologies and how those are utilized in big data
applications.

Keywords - Big data applications, machine learning, high
performance computing, auto-tunning

I. INTRODUCTION

Enormous development in hardware technology and com-
puter architecture have enabled complex machine learning
methodologies to be applied to solve difficult real world
problems using parallel programming models. Parallel ma-
chine learning aims to capitalize on the simultaneous execu-
tion of sophisticated machine learning algorithms using mod-
ern hardware architectures. A significant amount of effort
has been put into employing High Performance Computing
(HPC) technologies in to big data frameworks and salable
deep learning systems which are highly focused on reliability
as well as performance [1, 2].

In light of these trends, there exists a close connection
between machine learning and high performance comput-
ing as machine learning algorithms has been employed to
perform auto tuning of multicore based cross platforms for
performance optimization [3] and HPC technologies has
been utilized in many bigdata frameworks to enhance the
performance and throughput [1, 4, 5, 6]. Auto tuning could
be able to produce a high quality output which is many times
faster than the basic implementation. The state of the art ap-
proaches involves statistical machine learning (SML) based
methodologies using a single application, a single compiler,
a specific set of compiler flags and homogeneous cores to
perform the auto tuning [3]. On the other hand, state of the
art HPC approaches in big data frame works involves both
shared memory parallelization (symmetric multiprocessing)
and distributed memory parallelization (communicating se-
quential processing) [5].

This research tries to identify how machine learning and
HPC technologies are employed in corresponding frame-
works to provide a comparison of existing auto tuning

methodologies and big data frameworks.The organization of
the paper is as follows. In section II, a literature review on
intersection of HPC and machine learning is presented. Sec-
tion III provides a detailed description of the existing big data
frameworks appeared in the literature review. Conclusion is
elaborated in sections IV.

II. LITERATURE REVIEW

Parallel machine learning abstractions have long been
assayed and employed. Most of the research carried out
in parallel machine learning area, focused on performance
enhancement of bigdata or deep learning frameworks [1, 4, 5,
6]. There exits other researches which are focused on a auto
tuning of multicore based cross platforms [3, 7, 8, 9]. This
study investigate these parallel machine learning techniques,
and hence, they are discussed in this section.

A. HPC technologies in big data frameworks

Adam et al. [1] have developed a system based on com-
modity off the shelf high performance computing (COTS
HPC) technology. This system was a cluster of GPU servers
with Infiniband interconnections and MPI [10]. As it was
described, every server spawns one process for each of its
GPUs and an identification number (”rank”) was assigned by
MPI implementation [1]. Their approach was to divide up
the computational work among the GPUs in the cluster and
then organize their communication using MPI by enabling a
strictly model parallel scheme as each GPU is responsible
for a separate portion of the computation, but all of the
GPUs compute the same mini-batch of input samples until
synchronization happens. Sparse autoencoder learning algo-
rithm was used as the deep learning algorithm on 10 million
YouTube video thumbnails data set(200-by-200 pixel region)
[1]. Researchers have illustrated that their system was able
to train 1 billion parameter networks using only 3 machines
and 11 billion parameters using 16 machines in a couple of
days to claim the scalability of their system [1].

Recent research done by Peng et al. [4] has focused on
implementing a novel synchronized Latent Dirichlet Allo-
cation (LDA) machine learning system, HarpLDA+ based
on Hadoop and Java for topic modeling and data analysis
[11, 12]. New mechanisms have been proposed to reduce
the overhead in synchronized systems considering efficiency
and effectiveness of the system. Dynamic scheduling was
employed to reduce the overhead in the shared memory
model while Pipe-lining and timer control methodologies
were introduced for model rotation framework which comes



under the distributed memory model [4]. They have ex-
plained that HarpLDA+ distributed memory model utilizes
a Java collective communication library released as a plugin
for Hadoop. Researchers have compared the performance
of the HarpLDA+ against existing LDA algorithms such
as LightLDA, F+NomadLDA, and WarpLDA and claim
that HarpLDA+ was able to outperform all other compared
algorithms due to the optimization of the synchronization
and communication overhead [4].

A research done by Saliya et al. [5] have studied the
parallel machine learning on the Java Virtual Machine
(JVM) using an Intel Haswell HPC cluster with 24 or 36
cores per node. They have mainly focused in employing
bulk synchronous parallel (BSP) model in to existing Long
Running Jobs Fork Join (LRT-FJ) to java shared memory
parallel computing in order to optimize the Java parallel
programming model so that it can match the performance of
traditional programming model in C [5]. Researchers have
considered three major factors such as thread models (2 mod-
els), affinity patterns (6 patterns) and communication mech-
anisms(2 mechanisms). LRT-FJ and Long Running Threads
Bulk Synchronous Parallel (LRT-BSP) were considered for
the thread models and an interesting observations are made
such as context switches, CPU migrations, dTLB misses
are comparatively lower in LRT-BSP [5]. Core, Socket and
All were considered for process affinity variations while
Inherit and Explicit per Core were included as thread affinity
variations allowing these researchers to have 6 different
affinity variations. They have also implemented a memory
maps-based communication layer to improve the Java inter-
process communication [5]. Researchers have focused on
two parallel machine learning logarithms : K means clus-
tering (6 variations) and Multidimensional Scaling (MDS -
2 variations) for the performance analysis [5]. They have
concluded the research by elaborating that their LRT-BSP
approach could be implemented in to big data frameworks
such as Apache Beam, Flink and Spark to improve the
existing collective communications [5, 13, 14, 15].

A framework for parallel machine learning (GraphLab)
was designed and implemented by Yucheng et al.[6] for
aiding machine learning experts to avoid from repeatedly
solving the same design challenges. Researchers have devel-
oped GraphLab to identify and utilize the common pattern
in machine learning such as MapReduce by compactly ex-
pressing asynchronous iterative algorithms with sparse com-
putational dependencies while maintaining data consistency
and achieving a high degree of parallel performance[6]. As
they have explained their approach contained a data graph
which represents the data and computational dependencies,
a update functions which describe local computation, a Sync
mechanism for aggregating global state, a data consistency
model which determines the extent to which computation
can overlap and a scheduling primitives which express the
order of computation [6]. Researchers have implemented
parallel versions of belief propagation, Gibbs sampling, Co-
EM, Lasso and Compressed Sensing to show that GraphLab
performs really well with realworld large scale problems [6].

B. Machine Learning for auto tuning of multicore based
cross platforms

A case for machine learning to optimize multi-core per-
formance has studied by Ganapathi et al.[3] to enhance the
state of art auto-tuning approaches as hand-tuning is neither
salable nor portable. As researchers claimed existing auto
tuning approches are scalable, automatic, and produce high-
quality code but it suffers from two major drawbacks such
as size of the parameter space to explore (only a single
application, a single compiler, a specific set of compiler flags,
and homogeneous cores would have 40 million configura-
tions) and most existing auto-tuners only focus to minimize
overall running time not the efficiency (ex: energy and power
consumption) [3]. They have proposed a solution which
utilizes statistical machine learning (SML) approaches to
infer models from large quantities of data as SML based
methodologies do not rely on domain or application specific
knowledge. Kernel Canonical Correlation Analysis (KCCA)
was used as the SML algorithm that effectively identifies the
relationship between a set of optimization parameters and a
set of resultant performance metrics [3]. Researchers have
reported that they were able to reduce the six month long
search time to two hours on 7-point and 27-point stencil
code [3].

Bergstra et al. [7] have employed machine learning for
predictive auto-tuning of the Filterbank correlation kernel
with boosted regression trees. They have identified two
major state of art approaches to auto-tuning such as em-
pirical auto tuning which is generic approach that works
by measuring runtimes of implementations, and model-based
approach which determines those runtimes using simplified
abstractions [7]. They have used three sets of variables
such as task description (argument shapes, physical lay-
out), implementation description (auto-tuning parameters),
platform description (capabilities, micro-benchmarks) inside
their auto-tuning routine. Researchers have claimed that their
approach is not specific to filterbank correlation, nor to GPU
kernel auto-tuning, and can be extended to support most code
optimization task such as wide variety of problem types,
kernel types, and platforms [7].

Recent research done by Yigitbasi et al. [8] have focused
on employing machine learning-based auto-tuning for di-
verse MapReduce applications and cluster configurations in
Hadoop framework. Researchers have shown that support
vector regression model (SVR) has good accuracy and is
also computationally efficient for performance modeling of
MapReduce applications [8]. Researchers have compared the
exiting Starfish auto-tuner (a cost-based model) to the SVR
based approach and reported comparable and in some cases
even better performance [8]. Liao et al. [9] also have focused
on optimizing MapReduce in Hadoop framework using a
search-based machine learning model (instead of the existing
cost-based approach) called Gunther. Their approach utilizes
a Genetic algorithm designed to identify parameter settings
contributes to near-optimal job execution time [9].

As described above, interaction between machine learning



and HPC can be studied under two categories such as adap-
tation of machine learning techniques for code optimization
in big data frameworks and HPC techniques used in Big data
frameworks [1, 4, 5, 6, 3, 7, 8, 9]. This research is focused
on studying these techniques in the identified big data frame-
works such as Hadoop (Harp for collective communication
), Apache Beam, Apache flink, Apache Spark according to
the literature review [11, 12, 13, 14, 15].

III. REVIEW OF BIG DATA FRAMEWORKS

A. Hadoop and Harp
The Apache Hadoop is a framework that allows for the

distributed processing of big data across clusters of comput-
ers using simple programming models [11]. It is modeled
and implemented to scale up from single node to thousands
of nodes, each offering local computation and storage. This
frame work offers Hadoop MapReduce library to support
parallel processing of large data sets [11]. Harp is a collective
communication library which is plugged into Hadoop in
order to trasfer MapReduce jobs to Map-Collective jobs to
enhance the efficient in-memory collective communication
directly in map tasks [12]. Simlar to Hadoop, Harp also
consist of three levels such as application, framwork and
resource manger as shown in figure 1. BSP model (Map-
Collective) in the Harp library is shown in the figure 2.
Pig K-means and Pig PageRank are both compared against
Hadoop MapReduce and Harp Map-Collective to report
the comparatively better results obtained using collective
communications [12, 16].

Fig. 1. Architecture of Harp

Fig. 2. Parallelism Model for Harp

B. Apache Beam

According to Apache documentation, Beam is an unified
model for defining both batch and streaming data-parallel
processing pipeline [13]. Apache Beam supports distributed
processing back-ends such as Apache Apex, Apache Flink,
Apache Spark, and Google Cloud Dataflow [14, 15, 17].
Beam currently supports the Java Python SDKs and there
are three main data processing pipelines such as Apache
Spark, Apache Flink, or Google Cloud Dataflow representing
back-ends. The Beam model is a successor to MapReduce
and is focused on providing a unified solution for batch
and stream processing. The Apache Beam architecture is
shown in figure 3. Programming model in beam consist
of three major sections such as Pipelines, PCollections and
Transforms. Pipelines refers to the data processing step
while PCollections represents the data inside the Pipeline.
Transform is a operation such as core transforms, composite
transforms and IO transforms [13].

Fig. 3. Architecture of Apache Beam

C. Apache Flink

Apache Flink is an open-source stream processing engine
which supports distributed in-memory data processing for
big data applications. Flink currently supports programming
APIs in Java, Scala, Spargel, and python for both Unbounded
(infinite datasets that are appended to continuously) and
Bounded (finite, unchanging datasets) data models [14].
Flink supports two execution models such as streaming :
executes continuously as long as data is being produced, and
batch: executes and runs to completeness in a finite amount
of time, releasing computing resources when finished. Flink



provides few unique advantages for data processing such as
it provides results that are accurate, even in the case of out-
of-order or late-arriving data, it is stateful and fault-tolerant
and can seamlessly recover from failures and it performs at
large scale [14]. Components stack of Apache Flink is shown
in figure 4. A Flink program Can be studied under three
major states such as data source: incoming data that Flink
processes, transformations: data processing step, and data
sink: where Flink sends data after processing [14]. Apache
Flink feature data flow model and the execution model also
happens in data flow style.

Fig. 4. Components stack of Apache Flink

D. Apache Spark
Apache Spark is a fast and general engine which perform

tasks up to 100x faster than Hadoop MapReduce in memory,
or 10x faster on disk for high speed large-scale streaming,
machine learning and SQL workloads tasks [15]. Comparison
of runtimes of Logistic regression in Hadoop and Spark is
shown in figure 5. Spark offers to program the applications
employing over 80 high-level operators using Java, Scala,
Python, and R. Components stack of Apache Spark is shown
in figure 6. As shown in the figure, Spark powers the com-
bined or standalone use of a stack of libraries including SQL
and DataFrames, MLlib for machine learning, GraphX, and
Spark Streaming [15]. Spark can be utilized in standalone
cluster mode, on EC2, on Hadoop YARN, or on Apache
Mesos and it allows data access in HDFS, Cassandra, HBase,
Hive, Tachyon, and any Hadoop data source [15].

Fig. 5. Logistic regression in Hadoop and Spark

Fig. 6. Components stack of Apache Spark

IV. CONCLUSION

This research focused on identifying intersection of ma-
chine learning and HPC technologies in big data applica-
tions. Most of the big data frameworks are using data flow
execution model while others utilizes BSP model (MPI).
According to the literature review, it is evident that adaptation
of BSP model in to big data frameworks for parallel machine
learning has enhanced the performance than the data flow
execution model. Many researchers have reported the inef-
ficiencies of famous big data frameworks (Spark and Flink)
such as inability to support nested loops, lack of all-to-all
collective operations (using reduce operations followed by a
broadcast operation creates additional overheads), etc. Fac-
tors like thread models, affinity patterns and communication
patters also plays a major role in performance when it comes
to parallel machine learning. Even though, most of these big
data processing framworks utilizes HPC concept, there is a
plenty of room for improvement in terms of communication
and synchronization overheads.

REFERENCES

[1] Adam Coates et al. “Deep learning with COTS HPC
systems”. In: International Conference on Machine
Learning. 2013, pp. 1337–1345.

[2] Philip K Chan and Salvatore J Stolfo. “Toward Scal-
able Learning with Non-Uniform Class and Cost
Distributions: A Case Study in Credit Card Fraud
Detection.” In: KDD. Vol. 1998. 1998, pp. 164–168.

[3] Archana Ganapathi et al. “A case for machine learn-
ing to optimize multicore performance”. In: First
USENIX Workshop on Hot Topics in Parallelism (Hot-
Parfffdfffdfffd09). 2009.

[4] Bo Peng et al. “HarpLDA+: Optimizing Latent Dirich-
let Allocation for Parallel Efficiency”. In: ().

[5] Saliya Ekanayake et al. “Java thread and process per-
formance for parallel machine learning on multicore
hpc clusters”. In: Big Data (Big Data), 2016 IEEE In-
ternational Conference on. IEEE. 2016, pp. 347–354.



[6] Yucheng Low et al. “Graphlab: A new framework
for parallel machine learning”. In: arXiv preprint
arXiv:1408.2041 (2014).

[7] James Bergstra, Nicolas Pinto, and David Cox. “Ma-
chine learning for predictive auto-tuning with boosted
regression trees”. In: Innovative Parallel Computing
(InPar), 2012. IEEE. 2012, pp. 1–9.

[8] Nezih Yigitbasi et al. “Towards machine learning-
based auto-tuning of mapreduce”. In: Modeling, Anal-
ysis & Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), 2013 IEEE 21st Interna-
tional Symposium on. IEEE. 2013, pp. 11–20.

[9] Guangdeng Liao, Kushal Datta, and Theodore L
Willke. “Gunther: Search-based auto-tuning of mapre-
duce”. In: European Conference on Parallel Process-
ing. Springer. 2013, pp. 406–419.

[10] William Gropp et al. “A high-performance, portable
implementation of the MPI message passing inter-
face standard”. In: Parallel computing 22.6 (1996),
pp. 789–828.

[11] Tom White. Hadoop: The definitive guide. ” O’Reilly
Media, Inc.”, 2012.

[12] Bingjing Zhang, Yang Ruan, and Judy Qiu. “Harp:
Collective communication on hadoop”. In: Cloud En-
gineering (IC2E), 2015 IEEE International Confer-
ence on. IEEE. 2015, pp. 228–233.

[13] Apache Beam: An advanced unified programming
model. https://beam.apache.org/. Accessed:
2017-12-24.

[14] Paris Carbone et al. “Apache flink: Stream and batch
processing in a single engine”. In: Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering 36.4 (2015).

[15] Apache Spark. Apache Spark: Lightning-fast cluster
computing. 2016.

[16] Tak-Lon Wu, Abhilash Koppula, and Judy Qiu. “Inte-
grating Pig with Harp to support iterative applications
with fast cache and customized communication”. In:
Proceedings of the 5th International Workshop on
Data-Intensive Computing in the Clouds. IEEE Press.
2014, pp. 33–39.

[17] SPT Krishnan and Jose L Ugia Gonzalez. “Google
cloud dataflow”. In: Building Your Next Big Thing with
Google Cloud Platform. Springer, 2015, pp. 255–275.


